主页
外文期刊
OA 期刊
电子期刊
外文会议
中文期刊
标准
网络数据库
专业机构
企业门户
起重机械
生产工程
高级检索
关于我们
版权声明
使用帮助
Autonomous perception method of multi-degree-of-freedom industrial robot arm trajectory
参考中译:多自由度工业机器人手臂轨迹的自主感知方法
     
  
  
刊名:
Advanced Control for Applications
作者:
Xiaochuan Qian
(Institute of Technology, Xi'an International University)
刊号:
737B0253/I
出版年:
2024
年卷期:
2024, vol.6, no.2
页码:
e137-1--e137-16
总页数:
16
分类号:
TP2
关键词:
3D lidar
;
ICP algorithm
;
Industrial robot arm
;
Multiple degrees of freedom
;
Trajectory autonomous perception
参考中译:
3D激光雷达; ICP算法;工业机器人手臂;多自由度;轨迹自主感知
语种:
eng
文摘:
In this study, a novel autonomous sensing method of multi-degree-of-freedom industrial robot arm trajectory is proposed. The research takes the distance sensor to collect environmental data, and takes the point cloud data scanned by 3D laser as the basis. The environment model ofmulti-degree-of-freedom industrial robotic arm is established by Iterative Closest Point (ICP). Then the target object is calibrated by binocular imaging technology. Subsequently, angle of each joint of multi-degree-of-freedom industrial robotic arm is calculated to determine the spatial attitude of the robotic arm. In addition, 3D LiDAR is installed at the end of the robotic arm, and the end trajectory of multi-degree-of-freedom industrial robotic arm is sensed autonomously by using the optimal function. The proposed method has advantages of high accuracy and short sensing time in autonomous sensing of multi-degree-of-freedom industrial robot arm trajectory.
参考中译:
本研究提出了一种新颖的多自由度工业机器人手臂轨迹自主感知方法。该研究以距离传感器收集环境数据,以3D激光扫描的点云数据为基础。利用迭代最近点(Iterative Closest Point)建立了多自由度工业机器人臂的环境模型。然后利用双眼成像技术对目标物体进行校准。随后,计算多自由度工业机器人臂各关节的角度,确定机器人臂的空间姿态。此外,在机器人臂末端安装3D LiDART,利用最优函数自主感知多自由度工业机器人臂的末端轨迹。该方法具有多自由度工业机器人手臂轨迹自主感知准确度高、感知时间短的优点。
相关文献:
THE POTENTIAL OF COMBINED LIDAR AND SAR DATA IN RETRIEVING FOREST PARAMETERS USING MODEL ANALYSIS
LIDAR-based Long Range Road Intersection Detection
DETECTION OF VEHICLES IN SHADOW AREAS
DETECTION OF VEHICLES IN SHADOW AREAS USING COMBINED HYPERSPECTRAL AND LIDAR DATA
FAST APPROXIMATION FOR GEOMETRIC CLASSIFICATION OF LIDAR RETURNS
Plant detection and mapping for agricultural robots using a 3D LIDAR sensor
Recognition Method Applied to Smart Dump 9 Using Multi-Beam 3D LiDAR for the Tsukuba Challenge
Probabilistic 3D Sound Source Mapping System Based on Monte Carlo Localization Using Microphone Array and LIDAR
Specific person tracking using 3D LIDAR and ESPAR antenna for mobile service robots
Creating a 3D Cuboid Map Using Multi-Layer 3D LIDAR with a Swing Mechanism
国家科技图书文献中心
全球文献资源网
京ICP备05055788号-26
京公网安备11010202008970号 机械工业信息研究院 2018-2024